Que son los circuitos eléctricos?
Eléctrico, por otra parte, es aquello perteneciente o relativo a la electricidad (la propiedad física manifestada por la atracción o repulsión entre las partes de la materia o la forma de energía basada en dicha propiedad).
Un circuito eléctrico, por lo tanto, es la interconexión de dos o más componentes que contiene una trayectoria cerrada. Dichos componentes pueden ser resistencias, fuentes, interruptores, condensadores, semiconductores o cables, por ejemplo. Cuando el circuito incluye componentes electrónicos, se habla de circuito electrónico.
Entre las partes de un circuito eléctrico, se pueden distinguir los conductores (cables que unen los elementos para formar el circuito), los componentes (dispositivos que posibilitan que fluya la carga), los nodos (puntos del circuito donde concurren dos o más conductores) y las ramas (conjunto de los elementos de un circuito comprendidos entre dos nodos consecutivos).
Los circuitos eléctricos pueden clasificarse según el tipo de señal (corriente directa o corriente alterna), el tipo de configuración (serie, paralelo o mixto), el tipo de régimen (corriente periódica, corriente transitoria o permanente) o el tipo de componentes (circuito eléctrico o circuito electrónico).
La representación gráfica del circuito eléctrico se conoce como diagrama electrónico o esquema eléctrico. Dicha representación exhibe los componentes del circuito con pictogramas uniformes de acuerdo a ciertas normas, junto a las interconexiones (sin que éstas se correspondan con las ubicaciones físicas).
¿Cómo construir un circuito eléctrico sencillo?
* 1 tabla de madera de aproximadamente 20cm x 20cm (también se puede usar una base de plástico o cartón);
* 1 bombilla eléctrica;
* 1 trozo de cable de la extensión que se crea necesaria (si es posible contar con 2, cada uno de un color diferente, mejor);
* 1 batería común (también llamada pila);
* 1 interruptor de corriente;
* 1 portalámparas;
* cinta aislante;
* pegamento;
Los pasos para la construcción del circuito eléctrico son los siguientes:
1) Pegar la batería, el interruptor y el portalámparas sobre la tabla;
2) Cortar tres trozos de cable, y pelar sus extremos (si se cuenta con cables de dos colores, usar uno para los 2 negativos y el otro para el positivo);
3) Unir uno de los trozos de cable al polo negativo de la pila y el otro, al interruptor, tomando el recaudo de que este último esté en su posición de apagado;
4) Desde el otro extremo del interruptor, conectar un cable del mismo color que el anterior al portalámparas;
5) Cerrar el ciclo de conexiones uniendo el portalámparas al polo positivo de la batería, usando cable de un color diferente al anterior;
6) Colocar la bombilla en el portalámparas, asegurándose de que quede bien ajustada, aunque sin ejercer mucha presión, para evitar que se rompa;
7) Para comprobar que todo funciona como se espera, accionar el interruptor, ante lo cual la bombilla debería encenderse.
Un circuito eléctrico es el trayecto o ruta de una corriente eléctrica. El término se utiliza principalmente para definir un trayecto continuo compuesto por conductores y dispositivos conductores, que incluye una fuente de fuerza electromotriz que transporta la corriente por el circuito (Figura 2). Un circuito de este tipo se denomina circuito cerrado, y aquéllos en los que el trayecto no es continuo se denominan abiertos. Un cortocircuito es un circuito en el que se efectúa una conexión directa, sin resistencia, inductancia ni capacitancia apreciables, entre los terminales de la fuente de fuerza electromotriz.
Figura 2. Símbolos de algunos elementos de un circuito eléctrico.
Potencia eléctrica
Al circular la corriente, los electrones que la componen colisionan con los átomos del conductor y ceden energía, que aparece en la forma de calor. La cantidad de energía desprendida en un circuito se mide en julios. La potencia consumida se mide en vatios; 1 vatio equivale a 1 julio por segundo. La potencia "P" consumida por un circuito determinado puede calcularse a partir de la expresión:
(9)
Donde:
V: diferencia de potencial o voltaje aplicado a la resistencia, Voltios
I: corriente que atraviesa la resistencia, Amperios
R: resistencia, Ohmios
P: potencia eléctrica, Watios
Para cuantificar el calor generado por una resistencia eléctrica al ser atravesada por una corriente eléctrica, se usa el siguiente factor de conversión:
1 Watt = 0,2389 calorías / segundo
Circuito serie-paralelo
Un circuito en serie es aquél en que los dispositivos o elementos del circuito están dispuestos de tal manera que la totalidad de la corriente pasa a través de cada elemento sin división ni derivación (Figura 3). Cuando en un circuito hay dos o más resistencias en serie, la resistencia total se calcula sumando los valores de dichas resistencias. Si las resistencias están en serie, el valor total de la resistencia del circuito se obtiene mediante la fórmula:
Donde:
Re: resistencia equivalente de la disposición, ohmios
Ri: resistencia individual i, ohmios
En un circuito en paralelo los dispositivos eléctricos, por ejemplo las lámparas incandescentes o las celdas de una batería, están dispuestos de manera que todos los polos, electrodos y terminales positivos (+) se unen en un único conductor, y todos los negativos (-) en otro, de forma que cada unidad se encuentra, en realidad, en una derivación paralela. El valor de dos resistencias iguales en paralelo es igual a la mitad del valor de las resistencias componentes y, en cada caso, el valor de las resistencias en paralelo es menor que el valor de la más pequeña de cada una de las resistencias implicadas. Si las resistencias están en paralelo, el valor total de la resistencia del circuito se obtiene mediante la fórmula:
Donde:
Re: resistencia equivalente de la disposición, ohmios
Ri: resistencia individual i, ohmios
Figura 3. Disposición de bombillas en un circuito en serie y un circuito en paralelo.
Regla del divisor de tensión
La evaluación de la tensión que pasa por cualquier resistor o cualquier combinación de resistores en un circuito en serie se puede reducir a un solo elemento utilizando la regla del divisor de tensión. La prueba, que es muy corta y directa, se desarrollará con el circuito de la Figura 4.
Figura 4. Circuito en serie donde la corriente I atraviesa todos los resistores sin sufrir derivación alguna
a) Resistencia total: Rt = R1 + R2 + R3 +…RN (12)
b) Corriente: I = V/RT (13)
C) Tensión a través del resistor RX (donde x puede ser cualquier número de 1 a N): Vx = I.Rx
D) La tensión a través de dos o más resistencias en serie que tienen una resistencia total igual a:
R’T: V’T = I.RT (14)
E) Se sustituye I del inciso (B) en las ecuaciones de los incisos (C) y (D):
Regla del divisor de tensión:
En palabras, la regla indica que, para un circuito en serie, la tensión que existe en cualquier resistor (o alguna combinación de resistores en serie) es igual al valor de ese resistor (o a la suma de dos o más resistores en serie) multiplicado por la diferencia de potencial de todo el circuito en serie y dividido entre la resistencia total del circuito. Obsérvese que no es necesario que V sea una fuente de fuerza electromotriz.
Análisis de circuitos por el método de las mallas
El siguiente método de formato es usado para abordar el análisis de mallas.
1. Asignar una corriente de malla a cada trayectoria cerrada independiente en el sentido de las manecillas del reloj (Figura 7).
2. El número de ecuaciones necesarias es igual al número de trayectorias cerradas independientes escogidas. La columna 1 de cada ecuación se forma sumando los valores de resistencia de los resistores por los que pasa la corriente de malla que interesa y multiplicando el resultado por esa corriente de malla.
3. Debemos considerar los términos mutuos, se restan siempre de la primera columna. Es posible tener más de un término mutuo si la corriente de malla que interesa tiene un elemento en común con más de otra corriente de malla. Cada término es el producto del resistor mutuo y la otra corriente de malla que pasa por el mismo elemento.
4. La columna situada a la derecha del signo igual es la suma algebraica de las fuentes de tensión por las que pasa la corriente de malla que interesa. Se asignan signos positivos a las fuentes de fuerza electromotriz que tienen una polaridad tal que la corriente de malla pase de la terminal negativa a la positiva. Se atribuye un signo negativo a los potenciales para los que la polaridad es inversa.
5. Se resuelven las ecuaciones simultáneas resultantes para las corrientes de malla deseadas.
Figura 7. Una red eléctrica donde claramente se distinguen dos mallas. Nótese como las corrientes de malla se dibujan en el sentido de las agujas del reloj.
Análisis de circuitos por el método nodal
El siguiente método de formato es usado para abordar el análisis nodal
1. Escoger un nodo de referencia y asignar un rótulo de voltaje con subíndice a los (n — 1) nodos restantes de la red (Figura 8).
2. El número de ecuaciones necesarias para una solución completa es igual al número de tensiones con subíndice (N - 1). La columna 1 de cada ecuación se forma sumando las conductancias ligadas al nodo de interés y multiplicando el resultado por esa tensión nodal con subíndices.
3. A continuación, se deben considerar los términos mutuos, se restan siempre de la primera columna. Es posible tener más de un término mutuo si la tensión nodal de la corriente de interés tiene un elemento en común con más de otra tensión nodal. Cada término mutuo es el producto de la conductancia mutua y la otra tensión nodal enlazada a esa conductancia.
4. La columna a la derecha del signo de igualdad es la suma algebraica de las fuentes de corriente ligadas al nodo de interés. A una fuente de corriente se le asigna un signo positivo si proporciona corriente a un nodo, y un signo negativo si toma corriente del nodo.
Figura 8. Una red eléctrica donde claramente se distinguen cuatro nodos. Nótese como uno de los nodos se tomó como referencia, o sea, su potencial es cero.